464 research outputs found

    Truncated post-Newtonian neutron star model

    Get PDF
    As a preliminary step towards simulating binary neutron star coalescing problem, we test a post-Newtonian approach by constructing a single neutron star model. We expand the Tolman-Oppenheimer-Volkov equation of hydrostatic equilibrium by the power of c−2c^{-2}, where cc is the speed of light, and truncate at the various order. We solve the system using the polytropic equation of state with index Γ=5/3,2\Gamma=5/3, 2 and 3, and show how this approximation converges together with mass-radius relations. Next, we solve the Hamiltonian constraint equation with these density profiles as trial functions, and examine the differences in the final metric. We conclude the second `post-Newtonian' approximation is close enough to describe general relativistic single star. The result of this report will be useful for further binary studies. (Note to readers) This paper was accepted for publication in Physical Review D. [access code dsj637]. However, since I was strongly suggested that the contents of this paper should be included as a section in our group's future paper, I gave up the publication.Comment: 5 pages, RevTeX, 3 eps figs, epsf.sty, accepted for publication in PRD (Brief Report), but will not appea

    Excitation of the odd-parity quasi-normal modes of compact objects

    Get PDF
    The gravitational radiation generated by a particle in a close unbounded orbit around a neutron star is computed as a means to study the importance of the ww modes of the neutron star. For simplicity, attention is restricted to odd parity (``axial'') modes which do not couple to the neutron star's fluid modes. We find that for realistic neutron star models, particles in unbounded orbits only weakly excite the ww modes; we conjecture that this is also the case for astrophysically interesting sources of neutron star perturbations. We also find that for cases in which there is significant excitation of quadrupole ww modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.

    Simulation of merging binary neutron stars in full general relativity: Γ=2\Gamma=2 case

    Full text link
    We have performed 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity. We adopt a Γ\Gamma-law equation of state in the form P=(Γ−1)ρϔP=(\Gamma-1)\rho\epsilon where P, ρ\rho, \varep and Γ\Gamma are the pressure, rest mass density, specific internal energy, and the adiabatic constant with Γ=2\Gamma=2. As initial conditions, we adopt models of corotational and irrotational binary neutron stars in a quasi-equilibrium state which are obtained using the conformal flatness approximation for the three geometry as well as an assumption that a helicoidal Killing vector exists. In this paper, we pay particular attention to the final product of the coalescence. We find that the final product depends sensitively on the initial compactness parameter of the neutron stars : In a merger between sufficiently compact neutron stars, a black hole is formed in a dynamical timescale. As the compactness is decreased, the formation timescale becomes longer and longer. It is also found that a differentially rotating massive neutron star is formed instead of a black hole for less compact binary cases, in which the rest mass of each star is less than 70-80% of the maximum allowed mass of a spherical star. In the case of black hole formation, we roughly evaluate the mass of the disk around the black hole. For the merger of corotational binaries, a disk of mass ∌0.05−0.1M∗\sim 0.05-0.1M_* may be formed, where M_* is the total rest mass of the system. On the other hand, for the merger of irrotational binaries, the disk mass appears to be very small : < 0.01M_*.Comment: 27 pages, to appear in Phys. Rev.

    Gravitational waves from a test particle scattered by a neutron star: Axial mode case

    Get PDF
    Using a metric perturbation method, we study gravitational waves from a test particle scattered by a spherically symmetric relativistic star. We calculate the energy spectrum and the waveform of gravitational waves for axial modes. Since metric perturbations in axial modes do not couple to the matter fluid of the star, emitted waves for a normal neutron star show only one peak in the spectrum, which corresponds to the orbital frequency at the turning point, where the gravitational field is strongest. However, for an ultracompact star (the radius Râ‰Č3MR \lesssim 3M), another type of resonant periodic peak appears in the spectrum. This is just because of an excitation by a scattered particle of axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This excitation comes from the existence of the potential minimum inside of a star. We also find for an ultracompact star many small periodic peaks at the frequency region beyond the maximum of the potential, which would be due to a resonance of two waves reflected by two potential barriers (Regge-Wheeler type and one at the center of the star). Such resonant peaks appear neither for a normal neutron star nor for a Schwarzschild black hole. Consequently, even if we analyze the energy spectrum of gravitational waves only for axial modes, it would be possible to distinguish between an ultracompact star and a normal neutron star (or a Schwarzschild black hole).Comment: 21 pages, revtex, 11 figures are attached with eps files Accepted to Phys. Rev.

    The bar-mode instability in differentially rotating neutron stars: Simulations in full general relativity

    Get PDF
    We study the dynamical stability against bar-mode deformation of rapidly spinning neutron stars with differential rotation. We perform fully relativistic 3D simulations of compact stars with M/R≄0.1M/R \geq 0.1, where MM is the total gravitational mass and RR the equatorial circumferential radius. We adopt an adiabatic equation of state with adiabatic index Γ=2\Gamma=2. As in Newtonian theory, we find that stars above a critical value of ÎČ≡T/W\beta \equiv T/W (where TT is the rotational kinetic energy and WW the gravitational binding energy) are dynamically unstable to bar formation. For our adopted choices of stellar compaction and rotation profile, the critical value of ÎČ=ÎČdGR\beta = \beta_{dGR} is ∌0.24−0.25\sim 0.24-0.25, only slightly smaller than the well-known Newtonian value ∌0.27\sim 0.27 for incompressible Maclaurin spheroids. The critical value depends only very weakly on the degree of differential rotation for the moderate range we surveyed. All unstable stars form bars on a dynamical timescale. Models with sufficiently large ÎČ\beta subsequently form spiral arms and eject mass, driving the remnant to a dynamically stable state. Models with moderately large ÎČ≳ÎČdGR\beta \gtrsim \beta_{dGR} do not develop spiral arms or eject mass but adjust to form dynamically stable ellipsoidal-like configurations. If the bar-mode instability is triggered in supernovae collapse or binary neutron star mergers, it could be a strong and observable source of gravitational waves. We determine characteristic wave amplitudes and frequencies.Comment: 17 pages, accepted for publication in AP

    Matter flows around black holes and gravitational radiation

    Full text link
    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications we study i) dust shells falling onto the black hole isotropically from finite distance, ii) initially spherical layers of material falling onto a moving black hole, and iii) anisotropic collapse of shells. We focus on the dependence of the total gravitational wave energy emission on the flow parameters, in particular shell thickness, velocity and degree of anisotropy. The gradual excitation of the black hole quasi-normal mode frequency by sufficiently compact shells is demonstrated and discussed. A new prescription for generating physically reasonable initial data is discussed, along with a range of technical issues relevant to numerical relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to Phys. Rev.

    Scattering of particles by neutron stars: Time-evolutions for axial perturbations

    Get PDF
    The excitation of the axial quasi-normal modes of a relativistic star by scattered particles is studied by evolving the time dependent perturbation equations. This work is the first step towards the understanding of more complicated perturbative processes, like the capture or the scattering of particles by rotating stars. In addition, it may serve as a test for the results of the full nonlinear evolution of binary systems.Comment: 7 pages, 5 figures, Phys. Rev. D in pres
    • 

    corecore